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ABSTRACT

By applying the tools from queueing theory to a number of
problerns in computer communications and other multi-access
systems, we have found a number of useful and intuitively
pleasing rules of thumb which predict system behavior and which
are easily calculated by deterministic reasoning. These rules of
thumb ailow one to calculate the “proper” operating point in these
systems where the basic tradeoff is usually efficiency versus either
delay (due to queueing) or loss (due to blocking) or some
combination thereof. Using a previousiy defined notion of power
as applied to delay systems, we extend that definition to combined
loss and delay systems and then are able to define the optimal
system operating point as that which maximizes this defined power.
These resuits take advantage of the smoothing effect of the law of
large numbers as applied to icati Y

1. INTRODUCTION

Queueing theory is hard. Most interesting queueing models
cannot be solved exactly and this leaves the systems analyst in a
difficult position, especially in the initial design phase when he is
simply trying to size the system and yet may lack the engineering
intuition required for that analysis. Indeed, in the past we have
often seen gross errors in prediction when queueing effects have
been neglected:; it is only in the last few years that analysts have
come 10 appreciate the need for including the effects that queues
can have in degrading system performance. It is the purpose of this
paper to provide some engineering rules of thumb which may be
used in such situations. Indeed we will show that deterministic
reasoning (i.e., a "fluid* approximation (KLEI 76]) is usually a
dangerous approach in real system performance evaluation uniess
we find that the system obeys the law of large numbers; in such a

approaching an efficiency of 100% due to Eq. (1.1}, However /, a
functiont. which usually tends to vary slowly with p, may depend
critically on other sysiem parameters and may save the day in the
case when p—1! as we shall see. Of course where there is no

due to i then we know that proper scheduling
would permit p to approach one without any backlog forming at all
and it is such deterministic reasoning which we explore in this
paper.

Now for some definitions. We will use terminology from

p icati Ithough that is clearly not neccessacy.

We it a i system as a queueing

system in which messages arrive, spend some time passing through

the system (hopefully being routed and transmitted) and finaily
leave the system. Let:

T - average time spent in the system by a message (also known
as the average system response time)

X = average system response time when there is no interfering
traffic from other messages

W = T—X (W is the average wasted time or waiting time in the
system)

A = arrival rate of messages to the system

B = Blocking probability (i.e., the probability that an arriving
message is rejected by the system at the input)

Since there is competition within the system for access to the
system’s (typically issi ) we find that a
message spends on the average T seconds in the system rather than
the minimum time which is X seconds; therefore we see that a
spends T/X times as long in the system as it should if the

limit we may use deterministic reasoning (as opposed to h

or queueing calculations) which is quite accurate and which leads to
the deterministic cor jon that can be driven close 0
100% of their capacity and still perform weil. This last statement is
a mortal error in most queueing systems since typically we find that
the average response time 7T varies with system utilization p
according to the formula:

r- L wn

1-p
In this equation we observe that as p—I, then the sysiem
deteriorates in that both the response time and the backlog grow to
infinity. In general p represents a measure of the efficiency with
which the system resources are utilized {and is often cailed the
utilization factor); we see therefore that one is prohibited from

*This research was supported by the Advanced Research Projects
Agency of the Department of Defense under contract MDA 903-
77-C-0272.

system’s resources were available for that message's sole use. We
will have occasion to use this normalized response time in our
discussion below. Furthermore since the system may reject
messages {a fraction B of the time) then we define y to be the
traffic (messages per second) actually carried by the network which
must be equal to

y =a(1-8) (1.2)
Lastly we will be using the following well-known result (Little's
result} in our development
N=yT (LY
whete N is simply the average number of messages in the system.

Let us now introduce the notion of efficiency of a system
resource. For purposes of this paper we simply define it t0 be the
utilization factor of the servers and in the case of an m-server
system carrying a total traffic v we have that the utilization factor
(hence the efficiency) is simply given by
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p=yX/m {1.9)

Here we are assuming that a single transmission is all the service
required by a message. Clearty these notions can be extended to
multi-hop systems but such extensions will not be considered in
this paper. In the case of a multiple-server system we see that p is
simply the average fraction of busy servers and therefore
corresponds to the efficiency of the system resources.

The terms we have defined are clearly terms of interest to

analysts: 1 time, efficiency, and loss.
In the next section we discuss how these terms may be combined
into a single measure of system performance. In the balance of the
paper we discuss the behavior of some example systems and show
the way in which deterministic rules of thumb may be used in
evaluating system performance.

2. THE POWER OF A SYSTEM

In a system with no loss, there are two performance
measures which compete with each other: response (ime and
throughput, In [GIES 78], these two performance measures were
combined into a single measure known as power, P’, defined as
follows

[ A
P T Q.10
Wlth this measur¢ we see that an increase in throughput or a
in time i the power. Throughout this
paper we will use the symbol * to denote variabies which are
optimized with respect to power. In [KLEI 78] the author
examined this function and found that for any system described by
a delay-throughput function T'(y), power will be maximized at that
value of throughput where a ray out of the origin of the T, y plane
is tangent to the T(y) function. See Figure 2.1. For example in an
M/M/1 (see [KLEI 75] for an explanation of the */*/* notation for
queueing systems) queueing system, power is maximized at that
optimal delay (denoted by T°) and optimal throughput (v°)
combination such that the delay is mwice the minimum delay and the
throughput is ‘4 the maximum throughput, that s,
Ty )=2T¢0)=2% and ¥ =ymy/2 where Ymx iS that throughput
which drives the system into saturation, namely when
Pmax=YmaxX = 1.

We wish to introduce a more useful notion of power which
includes the effect of blocking in a loss system and also normalizes

the performance parameters in a suitable fashion. This new
definition of power, P, is given as follows
p - 208 @
T/
We note that
%)2
Pe=pop) a
m

The introduction of the term (X)¥m is simply to convert the
throughput y to the efficiency p through the relationship p=y%/m
and to convert the response time T to its normalized version T/x :
these normalizations are convenient but not especially significant.
Of more importance of course is the introduction of the factor -8
which represents the fraction of appiied traffic A which is actually
carried by the network; see Eq. (1.2). Thus our generslized
definition of power is simply the fraction of traffic which is carried
times the system efficiency divided by the normalized response
time. Such a measure is intuitively appealing and behaves in the
right direction with respect to all of our performance variables,
namely, efficiency (or throughput), response time, and loss. More
importantly, as we show below, it identifies the "proper” operating
point for our system; this proper operating point will turn out to
satisfy our intuitive expectation.

Let us rewrite Little's resuit as follows
Nwyr
= (yX/m)mT/%
- om(T/%) 2.4)
Now in the case of a system with no loss, (#=0), then we have

N- pz% 2.5

Let us now observe for the system M/M/1 that we have, at optirnal
power, p= i/2 , P = 1/4 and therefore an average number of
messages in the system equal to unity, that is:

N'=1 forM/M/1 2.6)

This is an interesting result and says that an M/M/1 system has
maximum power when on the lvera;e there is only one message in
the system; this is i leasing since it corresp to our
deterministic reasoning that Lhe proper operating point for a single
server system is cxactly when only one customer is being served in
the system and no others are waiting for service at the same time.

It turns out that this last result is general and holds also for
the system M/G/1; that is, we have the following theorem:

Theorem 2.1
For any M/G/1 queueing system, power, as defined in Eq
2.2), (with B=0), is maximized when
N'=1 Q.n
PROOF.
The proof follows simply when one uses the observation

made in {KLEI 78] that power is meximized for any T(y)
function when

——L”Zf,) - ——Lr; ) o)

If we now substitute in the P—~K equation for M/G/1 {KLEI 75,
Eq. (5.7)] we find that it will satisfy this last equation when N =1.

This result is shown in Figure 2.1 in which we plot the
normalized response time versus system utilization for M/G/1.
(The ratio of standard deviation to mean service time is Cp, the

[8731]

NORMALIZED RESPONSE TIME

. LX) X (X1 (X [ 0 o7 LX) (] 1.0
EFFICIENCY (o}

Figure 2.1 Optimal Power
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coefficient of variation of the service time _distribution.) We have
also shown the loci for which the equation N =1 is true and we find
that it passes through the umgcm point from a ray out of the origin
to the resp time f as d. Here again our
intuition is satisfied in that it corresponds to our deterministic
reasoning. However we now wish to extend this reasoning to the
law of large numbers and also later to extend this notion of power.

3. PURE DELAY SYSTEMS

In this section we study the queueing system M/M/m as a
representative queueing system with m servers. An infinite queue is
permitted and so the loss probability is 0 (that is, B = 0). See
Figure 3.1. In this sysiem a free server (an idle channel) will
transmit that message at the head of the common queue being
served by these m channels. The behavior of the M/M/m system is
an approximation to a large class of delay systems and we believe
that the limiting behavior we describe befow is characteristic of
these other systems. By means of this pure deiay system we will

two r haring princi which come about
when we deal with large numbers. The first of these is simply a
scaling effect and we will discuss it only in this section although its
effects can be observed in the other systems of this paper. The
second, and more important effect which is the main subject of this
paper, is the gain to be had when the law of large numbers takes
effect; this characteristic is that which we will study later in this
section and in the remaining sections of the paper.

DATA
SCURCE

DATA CHANNELS

Figure 3.1 The Queueing System M/M/m

The effect of scaling was studied in (KLEI 77]. The
principle has two useful forms as stated below. Consider an
M/M/m system which represents, say, a data communication
system with m communication channels. Let each channel have a
speed of C bits per seconds, let each message have an average
length / bits per message and let T(m, y,m C) represents the mean
response time of the system mch 1s, each of cap
C, and supporting a total throughput of y messages per second.
We note that the average sérvice time in the system is simply
x-f/ ¢ seconds and that the efficiency of each channel is given by
p—-yl/m C. For such a system the scaling principie, as given in
[KLEI 771, may be stated in two useful forms as follows:

The Scaling Principle for Resource Sharing Systems

(i) A delay system whose throughput y is scaled up by a factor
h and whose capacity is also scaled up by the same factor h (while
mainwaining a constant number of data channels (m) and a constznt
average message length 7) has a response time which is h times less
than the response time of the original system, that is

T(mhyhmC) = %T(m,‘y.mC) G0

(i) Alternatively, scaling up the capacity C more slowly than is
the throughput scaled, results in a system which maintains a constant
mean response time, and with an increasing efficiency; that is, one can
achieve arbitrarily high efficiency as the throughput and capacity are
each scaled up in a way which maintains constant performance.

)
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Figure 3.2 The Tradeoff for Efficiency. Throughput and
Response Time {(m=1)

EFFICIENCY  {p}
0.4 [ 2] [ ) .y
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Figure 3.3 The Tradeoff for Efficiency, Throughput and
Number of Data Channels (7/x=1)

The second form of this scaling principle is demonstrated
in Figure 3.2 as originally given in [KLEL 77]. This figure is for the
case m=1; similar curves may be drawn for other values of m as
shown in Figure 3.3. Both of these figures are shown for the
system M/M/m but, as proven in [KLEI 77}, similar resuits hold
for the system G/G/m. The first form of the scaling principle is
really quite remarkable and is not a generaily known fact. Indeed it
seems to defy one’s intuition, so let us take a moment to discuss
the phenomenon. Since N, the average number in system, is a
dimensionless quantity, then it reasenable to expect that it can only
depend upon the dimensionless quantity p and not upon ¥, / or C
by themseives. Now since psy//m C then if both y and C are each
scaled up by the same factor A, it is clear that p will not change and
therefore one would expect N to remain constant; this is consistent
with one’s intuition. Now, however, applying Little’s result we see
that T=N/y and therefore scaling both v and C by the factor # will
result in a mean response time T which is reduced by the same
factor 4. Q.E.D.
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The scaling principle is really quite important in system
design but it is distinct from our second principle which we now
discuss and which depends upon the law of large numbers. Many
of the beautiful results in the theory of systems subject to random
phenomena are due to the smoothing effect of the law of large
numbers; perhaps Shannon’s noisy coding theorem is the most
outstanding of these results [SHAN 49]. The principle is as
follows:

The Smoothing Principle for Large Shared Systems

A large population presents a total demand which is equal to
the sum of the average demands of each member of the population (as
opposed o the sum of the peak demands of each).

This is simply the law of large numbers {KLEI 75] which
states that the sum of » independent random variables, when
divided by #n, takes on a value which is predictabie to any degree of
precision as n gets large and this value is simply equal to the
average value of each of the random variables (in its simplest form
we assume that the random variables are identically distributed).
This principle is the key to our deterministic ruies of thumb for
probabilistic problems in computer commumcauons. S|mpiy stated,
if we have a large enough pop of i then
we can neglect the d ior of each ber of that
population and treat each as if it were perfectly deterministic. In
such a case it is quite simple to deterrnine system throughput,
response time, blocking probability, efficiency, etc. For example, in
the case of M/M/m the normalized response time is given by

T P

v E3)
where
P (mg)"’/[(l—g)m'l 13
T ey 2 (zx)" 03
(l—p)m'

If we now plot this normalized response time as a function of
system efficiency we obmm Figure 3.4. In this figure we see that as
the number of ch the nor time
decreases and in the limit we observe that the behavnor is exactly
the same as D/D/1. The system D/D/1 is a system with no
random effects and is capable of achieving an efficiency approaching
unity with no increase in delay. This is simply the case in which we
perfectly schedule arrivals such that the previous arrival departs

.
2
'

.

[

o
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Figure 3.5 Power for M/M/m

from a channel just prior to the next arrival. One might be
surprised that this author is suggesting that a multiple channet
system is superior to a single channel system due to his comments
in [KLEI 77 in which he stated that a single channel was superior
to  muitiple channels. These two seemingly contradictory
statements are nevertheless consistent since in the current case we
are increasing the totai system capacity and are holding X constant
whereas in the discussion of {KLEI 77], we were maintaining the
total system capacity fixed and dividing it equally among the m
<hannels, thereby increasing X by the factor m.

Let us now apply the notion of power introduced in Section
2 to this pure delay system. In this case of pure delay we remind
the reader that S=0 and so from Eq. (2.2) we have simply

p=—£_ (3.4
(T/X)

This function is plotted versus efficiency in Figure 3.5. Note for
m=1, that the maximum power occurs at p=1/2 as observed in
Section 2 for the system M/M/1. Of more interest is the behavior

of the power function for larger 7, in particular we observe that as

72 4]
18. 0. . ». . . ol “».

NORMALIZED RESPONSE TIME
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EFFICIENCY  (p)

Figure 3.4 Response Curves for M/M/m

Figure 3.6 Average Backlog at Optimal Power
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m-=co, we have that the power is directly proportional to the
throughput so long as 0<p <1, If we substitute Eg__ (3.2} into Eq.
(3.4) we easily see that at maximum power, N'=l for m-l
similarly we observe that N =m for m—e=. One wonders if, i
v . .

general, N'=m for all m. Unfortunately this is not true; for
exnmple for m=2 we find that the optimal power is achieved when
N'=J/3=1.732... However, as can be seen from Figure 3.6,
which we have plotted the value of N* which is achieved a:
maximum power as a function of the number of channels, m, we
find that N =m is quite a good approximation {(the dotted line
represents m itself). The intuition here is similar to that expressed
at the end of Section 2, namely, one should have a number of
messages in the system such that each channel has on the average
one message in transmission and no other messages waiting; in the
deterministic case this is an exact statement and here we see that in
the random case M/M/m, that as long as m gets large we find this
deterministic rule of thumb is a good approximation. In the next
section we will se¢ a dramatic manifestation of the smoothing
principte just described.

4. PURE LOSS SYSTEMS

In this section we study the pure loss system M/G/m/m
which consists of m channels with no storage space for queued
messages. Any message which arrives when all channels are busy
will be rejected by this system; the probability that a message is
cejected is, as defined above, B. The system structure is shown in
Figure 4.1. Here we see the m data channeis where again we
assume that the average time requi to is
given by ¥ seconds. Furthermore, we have decomposed the
Poisson input into M independent Poisson sources each of which
generates traffic at a rate a messages per second: thus the totai
input rate is simply

A=Ma @.n

Of course the total traffic from the M sources is equivalent o0 a
single source generating traffic at a rate A. The product aX=a is
often referred to in the fieid of telephony as the number of Erlangs
of traffic offered by each of the sources. Further, let us define the
total applied load as

A =X = MaXx = Ma

Now let us suppose that a=1/2, X=1 and m=1000. One wonders
how many sources, M, this system of 1,000 channels can support?
Indeed what is the proper number M for "good" system operation.
This is clearly an undefined question since we have not defined the
notion of "good”. However the tradeoff is clear, namely, if we wish
to have a low loss system then M should be small (but this resuits
in the inefficient use of the data channeis); on the other hand if we
wish to have highly utilized channels, then M should be large
(however in this case the loss probability will be unacceptably

large}. Since a=1/2 we see that each source reaily requires the use
of a data channel half the time so one might expect that the
“proper” number of sources which the system can support is equal
to twice the number of channels, namely 2,000. Clearly this is
deterministic reasoning since if each source required the use of the
channet exgcrly half the time and if it required this use in a
deterministic way, then we couid exactly schedule two sources on a
single channel in a way which would produce no interference
between these sources, thereby supporting exactly 2,000 sources. If
we attempted to drive the system harder than that, then beyond
2,000 sources there would be a clear interference whereas prior to
that point there would be no blocking at all; indeed at exactly
M=2,000, we have a system with zero blocking and 100%
utilization of the channels! Below we show that one can achieve
this best of all possible situations even with non-deterministic
inputs as long as the number of channels is large enough so that
the smoothing principle comes into effect (remember that this
principie guarantees that a large coliection of random sources will
present a total load which appears deterministic in nature).

The performance variables we wish to examine in this case
of pure loss are as follows: p, the efficiency of each channel: B, the
loss probability for an arriving message; and P, the power of the
system as defined in Eq. (2.2). Since this is a system with pure
loss, then any message which is accepted by the system will spend
on the average an amount of time in the system equal to the

tr ission time of a r that is T/x=1. Therefore
the appropnate definition of power in the pure loss case is simply

P=p(1-8) (4.2)
Furthermore from Eq. (1.2) we have
p=A1-B)x/m = A(1-B)/m {4.3)

Thus we see that the three performance functions p, 8 and P are
ail determined by the by the blocking probability 8. For the system
M/G/m/m it is well-known [GROS 74] that:

A% m!

T 4k
k=0

B - (4.4)

This is Erlang’s famous blocking formuia. Unfortunately, for finite
values of m, the sum in the denominator cannot be expressed in a
simple form and so one finds this function tabulated in most
telephony handbooks. Of course for m=I1 we have the simple
expression

A
1+4

Whereas B remains as complex as Eq. (4.4) for finite values of m,
we find for very large values of m that a very simple behavior
maintains which is related to the behavior at m=1{. Indeed the
critical variable to consider is M/m which is simply the ratio of
sources to channels. M/m will be used 10 describe the input t0 our
system in the remainder of this paper. The limiting behavior here
is given in the following theorem (see the Appendix for a proof of

B = (m=1) (4.5)

W,

3 LOSS 3

eorgrins

SOURCES DATA CHANNELS

Figure 4.1 The Pure Loss System M/G/m/m
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the theorem).
Theorem 4.1

In the {imit as the number of data channels approaches infinity,
we have

lim 8 = 1

_ M (4.6)
aM/m m
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Figure 4.2 The Blocking Probability

B is plotted versus the critical parameter M/m, the number of
sources per channel, for various values of m in Figure 4.2. The
important observation to make is that the blocking probability
rather quickly drops to zero as long as a(M/m) <1 and beyond this
point appears to behave like an m=1 system as far as the blocking
probability is concerned. We may rewrite this condition simply as
A<m. What this tells us is that for a large number of data
channels, this system is behaving deterministically in that it has
perfectly scheduled the large number of sources generating

( the hing principle is now in effect) such
that no mutual interference occurs; this is true as long as the
number of channels can support the number of sources on rthe
average. H. when the of this limit,
then the system begins to block as if all additional traffic were being
fed into a single channel system.

From Theorem 4.1 follows two obvious corollaries:

Corollary 4.1

In the limit as the number of channels approaches infinity, the
efficiency of each channel is given by

M oM L
limp =1 ™ m a @.7
e
1 LM
a m

The behavior here is shown in Figure 4.3 in which we plot
the channel efficiency versus M/m. We see that in the limit of a
large number of channels, the channel efficiency grows linearly at a
slope a with the ratio of sources to channels until the efficiency
reaches 100% at which point it remains at this value as the load
increases.

Coroliary 4.2

As the number of channels approaches infinity the power of the
system behaves as follows

aM OS—M—<l
imP={ ™ m a 4.8)
e 1 1 .M

aM/m asm

POWER {P)

Figure 4.3 Channe! Efficiency

Here we see the beauty of our definition of power. As
shown in Figure 4.4, it has peaked at exactly the right point,
namely, when a(M/m)=1. Below this point the channels are
underutilized. Above this point blocking begins to set in. For finite
values of m, we see that these statements are approximately true
and that the maximum power point occurs at smaller values of the
source to channel ratio; however, at m=1 we see that the power
once again peaks at this same critical point namely when
a(M/m)=1. The proofs for these two corollaries easily follow from
Theorem 4.1 and are given in the Appendix.

In this section we have seen that in the limit of a large
number of data channels, the behavior is easily predicted by
deterministic reasoning dug fo the smoothing principle stated in the
previous section.

5. COMBINED LOSS AND DELAY SYSTEMS
In this section we study the system depicted in Figure 5.1

which combines both loss and defay. This is the system M/M/m/K
which consists of m channels and space for K—~m queued messages;
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Figure 4.4 Power
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Figure 5.1 The Loss Plus Delay System M/M/m/K

for convenience of scaiing we select K=(1+8)m (in the exampies
below we will choose B=1). Thus the system can hold at most X
customers of which at most m will be in the process of
transmission. If a message arrives when all storage spaces are full,
then that message will be rejected by the system; again the
probability that a message is rejected is B. As in the prevnous
sections we have M sources each ing traffic i

from a Poisson process at a rate  yielding a total applied traffic k
as given in Eq. (4.1). Recall the critical parameter a=aX where ¥
= gverage service time. Below we show that the proper operating
point for this system, when m is large, is such that the ratio of the
number of sources to the number of channeis, namely M/m , is
selected so that

.1)

m a
This is the smoothing principle again and is the resuit one wouid
obtain if the entire load were deterministic.

Using the from theory
{KLEI 75] we readily obtain the foilowing expresslcm for the loss
probability

- AX/ (m\mE=m) .2
Am1—(aM/m)X-mtl)  mol 4% ’
m!(1=aM/m) oo Kt
As with Eq. (4.4) the sum in the d cannot be d
in a simple form. For m=1 we have the simpie expression
1-4
B= A"m (m=1) 5.3)

As in the previous section we find that the compiex expression for
the loss probability given in Eq. {5.2) takes on a rather simpie form
for very large values of m Again the appropriate variable to
consider is M/ m, the ratio of sources to channels, and the limiting
behavior is given in the following theorem

Theorem 5.1

In the limit as the number of data channels approaches infinity,
we have

lim 8 = 1
L 1-
aM/m

We note that Theorem 5.1 is the same as Theorem 4.1
showing that the provision of a finite storage capacity does not
affect the limiting behavior of the blocking probability. The proof
of this theorem is similar to that of Theorem 4.1 and is not given
here. B is plotted versus the critical parameter M/m for various
values of m in Figure 5.2. The behavior is similar to (and better
than) the behavior of the blocking probability in the pure loss
system of the previous section.

M (5.4)
m

From Theorem 5.1 we have the two following corollaries

ey 8 as

BLOCKING PROBABILITY  (8)
[X]

swménrcn‘uuzL .(M/m) )
Figure 5.2 The Blocking Probability
Corollary 5.1

In the limit as the number of channels approaches infinity, the
efficiency of each channel is given by

M oM L
”lg'n. p= 1 < M (5.5)
a m
The behavior of the efficiency is given in Figure 5.3.
-
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SOURCES / CHANNEL  (M/m)
Figure 5.3 Channel Efficiency
Corollary 5.2

As the number of channels approaches infinity, the power of the
system behaves as follows

M oML
lim P = T "m’ (5.6)
fleih 1 1M
(1+B)aM/m a m

Again we see the beauty of our definition of power. As
seen in Figure 5.4, it peaks at exactly the right point, namely, when

43.1.7




T

.

p
.

-
é me
ness

‘e
‘ -
et

POWER (P)
4 aa ea

[

{1/%)
1.

NORMALIZEQ RESPONSE TiME

[

1.4

1.4

T y T T T T T T T
3 L L 3 . T L L 0
SOURGES / CHANNEL  (M/m)
Figure 5.4 Power

aM/m=1. Below this point the channels are underutilized and
above this point blocking sets in. The proofs for these two
coroilaries easily follow from Theorem 5.1 and from the definition
of power. We note that the normalized delay 7/Xis, in the limit,

1 o< %<%
lim T/X = 6.
= 148 LM
a n

With no queues the mean response time is simply equal to an
average service time whereas with an essentially fuil queue, the
time in system is equal 1o the time to empty the queue (8x)
seconds plus one average service time. The behavior of this
normalized delay as a function of M/m is given in Figure 5.5; here
we see the dramatic transition in response time as described in Eq.
(5.7); this is the familiar "zero-one” behavior so often seen when
the law of large numbers comes into effect. The mean number in
system N may also_be normalized with respect to the number of
channels, that is N/m, and this is plotted in Figure 5.6. The
limiting behavior is given by

- M 0S--1\1<l
lim - Y 5.8
— 8 LM
A ﬂg m

This last follows directly from Little's result as given in Eq. 2.4),
that is,
N 3 (59
m
and so Eq. (5.8) follows from Eq. (5.5) and Eq. (5.7).

Thus we see as in Section 4, that the behavior in the limit
of a large number of data channels is predictable by simpie
deterministic reasoning.

6. GENERALIZED POWER
In the discussion of Section 2, we showed some interesting

properties of power (as defined in Section 2.2). In Sections 3,4 and
S, we demonstrated the importance of this definition of power in

R/ m)

BACKLOG / CHANNEL

y T T T T T T T T
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[ L 5 [ .
SOURCES / CHANNEL  (M/m)
Figure 5.5 Response Time

given in that simple equation. I[n this section we offer a more
generalized definition of power (applied to pure delay systems for
purposes of this paper) which gives the reader the opportunity to
emphasize the relative importance of throughput versus response
time in any fashion he deems appropriate.

Our is to i a tive real
variable r and to redefine power as
=2 ®.1
T/

(the obvious generalization which includes the blocking probability
as well will be the subject of a forthcoming paper). By the
introduction of this new variable, we see that the system efficiency
can be favored more heavily over system response time simply by
increasing the parameter r. Indeed, this parameter permits one to
redefine the location of the knee in the curve which describes the
response time as a function of throughput (or efficiency).

It is not difficult to show the remarkabie result as given in
the following theorem

1.8

-
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g

the limiting case as the number of data ch if d to
infinity. However, the critical reader might well compiain that the
definition as given in Eq. (2.2) forces one to accept the relative
importance of efficiency, blocking, and response time to be that

& T T T T T T T T T
. . X . X
SOURCES / CHANNEL  (M/m)

Figure 5.6 Backlog

43.1.8



AVERAGE BACKLOG ()
. . -, ..

& T T
0. 10 1.0 8 .8 (2]
r
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Theorem 6.1
For the system MIM/! we find that power is maximized when
Nomr 6.2

This is a most pleasing result due to its extreme simplicity.
In the case of M/G/1, we are not quite so fortunate and we find
that at maximum power the average number in system is a more
complicated function both of the parameter 7 and of the coefficient
of variation, C,, of the service time distribution (recall that C, is
simply the ratio of the standard deviation to the mean service
time). Indeed we have

Theorem 6.2

For the system MIGI1 we find that at maximum power. the
average number in system, is given by

w21 e 2oy D +8G+ DR (D22 (¢ 5
4r[(x+2) (r+1)=R1
where
R = V=D Iel+dx (HD+40+1)2 (6.4)
and
x = Cy-1 6.5}

Note, for r=1, that N'=1 which simply is Theorem 2.1
again; note also that for x=0 ( which corresponds to the case
C,,’-l_(which implies that we are dealing with the system M/M/1)
that N '=r which is simply Theorem 6.1.

In Figure 6.1 we plot N as a function of r and in Figure
6.2 we give the same plot on expanded scales to show the behavior
below r=1. It is easy to show the following

Theorem 6.3
For iarge r we have the following limiting behavior
N 1+C
tim & o 2 6
r—es 1 2

This behavior is easily seen in Figure 6.1.

We may also describe p” which is the efficiency obtained at
maximum power. This is given in

)
1

AVERAGE BACKLOG (N

.-

(2] . (2} L8

. r
Figure 6.2 Behavior of Optimal Average Backlog for Various r
{expanded scale}

Theorem 6.4
For optimal power we have that the efficiency is given by

o (r=1x=20r+1})+R
TR (W)
and for large r we find
p—i-d ©9

Let us now discuss the power for m—es. From Theorem
5.1 and Corollary 5.1, we see that B remains at zero for
0< (M/m)<(1/a) and that p rises continuously in the same range.
Further, for §<co, we see that the normalized response time, T/%,
remains constant in this range. For (M/m)>(1/a), the blocking
increases, the cfficiency no longer climbs and the delay takes a
stepwise increase at this boundary. Therefore any definition of
power, say

P = f(p)g(BYA(T)

such that f is increasing and both g and A are decreasing functions
of their arguments, must (in the limit as m=-o0) peak at
(M/m)=(1/a). The expression given in Eq. (6.1) is simply one
such example.

7. CONCLUSION

In this paper we have tried to establish the validity of using
deterministi ing to | the performance of computer -
communication systems. We have shown that the smoothing effect
of the law of large numbers does indeed permit such reasoning in
the case of many shared resources. The general result is that one
should operate a system at that load which just saturates the system
resources; in this calculation, one may assume that the load is
deterministic and perfectly scheduled.

By defining power in terms of efficiency, blocking and
tesponse time, we were able (0 show that, in the limit, power is
maximized at this saturated load. A generalized definition of power
was also given and this too peaked at the saturation load fer a large
class of power functions.
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APPENDIX:

Proof of Theorem 4.1

We study the behavior of the loss probability B at fixed
values of M/m as m — oo ; thus, we let M = pm/a for fixed values
of p. We also define
k

A
flz-F

Let us consider the two regions (OSM<l and LSM)
m a a m
separately:

Case 1: 0s M <l 0gpen)
m a

Let us assume ( at no loss of generaiity in the limit as
A — =) that pm is an integer; then pm = Ma = 4 is an integer
Now consider the ratio
LTI
S A (AN
where p4 is a non-negative integer and y=1. Using Stirling’s
approximation, we have
R= eA(l-yPyM‘/; - e All=y+yiog yl J;
But, as is well-known, for y=1, y>0,
logy > l—l
¥
(equaity holds for y=1). Thus
1=y+ylogy > 0

and so
lim R = lim e#1=r*85] /} m a0
A== A~

This result simply shows that the term 7, dominates all other terms
S for k= A.

Now since p=Ma/m=A/m<1 (ie., m>A4), we have

0gp-2 s;—”-%
b ‘
kol

with y=m/A4 >1. Clearly, since A=mp for fixed p,

0< limB< limL =0 QED. (Case 1)
m—a A== R

(P21

Case 2: lSM
a  m

From Eq. (4.4) we see that

Sh T Fopen §om .

1_5_*-°k_~-°k"_'§0"! -z(m—k)!A
= "= -

k;ﬂfk Eofk/fm Eo P A Z T3t A

But, by Stirling's approximation,
b
Ml (Mg kyTY
(m=k)! (e) a m)
For k fixed, we then have that for m large
ml_
—_—=m

(m=k)!
and so, for m large and p2>1 we have (using p=4/m)

-k
Elp -t _ p=(m+D
-8 = zm x - [ = p "0
=
k=0

Thus lim 18 = % -2 QED. (Case 2)

Proof of Corollary 4.1
From Eq. (4.3) we have
p = (U~B)X/m = 2(1-8) - p(1-8)

Thus, from Theorem 4.1,

=My oML
limp = m m - a
2.y lgﬁ
) a m

Proof of Coroilary 4.2

From Eq. (4.2) we have
P = p(1-8) = p(1-8)?
Thus, from Theorem 4.1,

pma  ogMo L

lim P = m moa
e

L1 LM

PP aM/m @ m
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